电感的核心参数
发布时间:
2021-11-12
1、电感量L
电感量L表示线圈本身固有特性,与电流大小无关。除专门的电感线圈(色码电感)外,电感量一般不专门标注在线圈上,而以特定的名称标注。电感量也称自感系数,是表示电感器产生自感应能力的一个物理量。
电感器电感量的大小,主要取决于线圈的圈数(匝数)、绕制方式、有无磁芯及磁芯的材料等。通常,线圈圆数越多绕制的线圈越密集电感量就越大。有磁芯的线圈比无磁芯线圈电感量大磁芯导磁率越大的线圈,电感量也越大。
电感量的基本单位是亨利(简称亨)用字母H表示。
2、感抗XL
电感线圈对交流电流阻碍作用的大小称感抗XL,单位是欧姆。它与电感量L和交流电频率f的关系为XL=2πfL。
3、品质因素Q
品质因素Q是表示线圈质量的一个物理量,Q为感抗XL与其等效的电阻的比值,即:Q=XL/R。线圈的Q值愈高,回路的损耗愈小。线圈的Q值与导线的直流电阻,骨架的介质损耗,屏蔽罩或铁芯引起的损耗,高频趋肤效应的影响等因素有关。线圈的Q值通常为几十到几百。采用磁芯线圈,多股粗线圈均可提高线圈的Q值。
4、直流电阻DCR
电感线圈在非交流电下量得之电阻,在电感器设计中,直流电阻愈小愈好,其量测单位为欧姆,通常以其最大值为标注。
5、分布电容
线圈的匝与匝间、线圈与屏蔽罩间、线圈与底版间存在的电容被称为分布电容。分布电容的存在使线圈的Q值减小,稳定性变差,因而线圈的分布电容越小越好。采用分段绕法可减少分布电容。
6、自谐振频率(Self-Resonance Frequency)
由于Cp的存在,与L一起构成了一个谐振电路,其谐振频率便是电感的自谐振频率。在自谐振频率前,电感的阻抗随着频率增加而变大;在自谐振频率后,电感的阻抗随着频率增加而变小,就呈现容性。
7、允许误差
电感量实际值与标称之差除以标称值所得的百分数。
允许偏差是指电感器上标称的电感量与实际电感的允许误差值。
一般用于振荡或滤波等电路中的电感器要求精度较高,允许偏差为±0.2%~±0.5%而用于耦合、高频阻流等线圈的精度要求不高,允许偏差为±10%~±15%。
8、标称电流
也叫额定电流,指线圈允许通过的电流大小,通常用字母A、B、C、D、E分别表示,标称电流值为50mA、150mA、300mA、700mA、1600mA 。额定电流是允许能通过一电感之连续直流电流强度,此直流电流的强度是基于该电感在最大的额定环境温度中的最大温升,额定电流与一电感由低的直流电阻以降低绕线的损失的能力有关,亦与电感驱散绕线的能量损失的能力有关,因此额定电流可借着降低直流电阻或增加电感尺寸来提高,对低频的电流波形,其均方根电流值可以用来代替直流额定电流,额定电流与电感的磁性并无关连。
9、饱和电流Isat
在电感上加一特定量的直流偏压电流,使电感的电感值下降,相对未加电流时的电感值下降10%(铁氧体磁芯)或20% (铁粉芯),这个直流偏压电流就叫该电感的饱和电流。空芯、陶瓷芯电感是没有饱和电流的。
10、直流阻抗Rdc
电感的阻抗值是指其在电流下所有的阻抗的总和(复数) ,包含了交流及直流的部分,直流部分的阻抗值仅仅是绕线的直流电阻(实部),交流部分的阻抗值则包括电感的电抗(虚部)。从这个意义上讲, 也可以把电感器看成是"交流电阻器”。电感通过直流电时的电阻值。这个参数影响最大最直接的就是发热损耗,所以直流阻抗越小损耗越少。减小Rdc与尺寸小型化等条件略有冲突。只要从上述的满足电感、额定电流等必要特性的电感器当中,选定Rdc更小的产品即可。
11、阻抗频率特性
理想电感的阻抗随着频率增加而增加,然而实际电感由于寄生电容和寄生电阻的存在,在一定频率下呈现感性,超过一定频率呈容性,阻抗反而随着频率的增加而减小,这个频率就是转折频率。
12、居里温度
居里温度是铁芯的一个重要参数,超过此温度铁氧体磁芯将失去磁性。因此要注意电感的工作温度不能超过铁芯的居里温度。铁芯的磁导率一般在接近居里温度时会急速上升,因而电感值亦上升,居里温度导磁率降至很低,因而使电感值急速下降,当导磁率下降至室温下的10%时,其温度称之为居里温度。
13、测试频率
测试频率用来测量电感的电感值或Q值的频率,工业上常用的测试频率包括:1KHz、79.6KHz、252KHz、796KHz、2.52MHz、7.96MHz、25.2MHz、50MHz,现在的趋势是根据客户的使用频率作为测试频率。
14、铁芯损失(core loss)
铁芯损失,简称铁损,主要由涡流损与磁滞损造成。涡流损大小主要是看铁芯材料是否容易「导电」;若导电率高,即电阻率低,涡流损就高,如铁氧体的电阻率高,其涡流损就相对地低。涡流损也与频率有关,频率愈高,涡流损愈大,因此铁芯材料会决定铁芯适当的工作频率。一般而言,铁粉芯的工作频率可到1MHz,而铁氧体的工作频率则可到10MHz。若工作频率超过此频率,则涡流损会快速增加,铁芯温度也会提高。然而,随着铁芯材料日新月异,更高工作频率的铁芯应是指日可待。
另一个铁损是磁滞损,其与磁滞曲线所围之面积成正比,即与电流交流成分的摆动(swing)幅度有关;交流摆幅愈大,磁滞损也愈大。
在电感器之等效电路中,常用一个并联于电感的电阻来表示铁损。当频率等于SRF时,电感抗和电容抗抵消,等效电抗为零,此时电感器之阻抗即等效于此铁损电阻串联绕线电阻,且铁损电阻已远大于绕线电阻,所以在SRF时的阻抗就约等于铁损电阻。以一低压电感为例,其铁损电阻约在20kΩ左右,若以电感两端的有效值电压5V来估算,其铁损约为1.25mW,这也说明了铁损电阻愈大愈好。
15、封装结构(shield structure)
铁氧体电感的封装结构有非遮蔽式、加磁胶之半遮蔽式、与遮蔽式,而不论哪一种都存在相当的空气隙。显然此空气隙会有漏磁发生,且最坏的情况是会干扰周遭之小信号电路,或者,如果附近有导磁材料,其电感值也因此被改变。另一种封装结构为冲压式铁粉电感,由于电感内部没有间隙,且绕组结构扎实,因此磁场散逸问题较小。图10是利用RTO 1004示波器之FFT功能量测冲压式电感上方及侧边3mm处之漏磁场大小。表4列出不同封装结构电感的漏磁场大小比较,可看出非遮蔽式(non-shielded)电感之漏磁最严重;冲压式(molded)电感的漏磁最小,显示其磁遮蔽效果最好。这两种结构的电感之漏磁场大小相差约14dB,也就是将近5倍。
16、耦合(coupling)
在一些应用当中,有时PCB上会有多组直流转换器,通常会相邻排列,且其对应之电感器也会相邻排列的情况,如果使用非遮蔽式或加磁胶之半遮蔽式的电感器,可能会相互耦合,形成EMI干扰。因此,在放置电感时,建议先标注电感的极性,将电感最内层之起绕点接到转换器之切换电压,如降压转换器的VSW,即动点,而将电感之外层出线端接到输出电容,即静点;铜线绕阻也因此如同形成一定程度的电场遮蔽。在多路转换器的布线安排中,固定电感的极性,有助于固定互感的大小,避免一些意想不到的EMI问题。
相关新闻
2024-01-31
2024-01-31
2024-01-31
2022-07-28
2022-01-10
2021-11-12

